Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 129
1.
Proc Natl Acad Sci U S A ; 121(19): e2319163121, 2024 May 07.
Article En | MEDLINE | ID: mdl-38696472

DELLA proteins are negative regulators of the gibberellin response pathway in angiosperms, acting as central hubs that interact with hundreds of transcription factors (TFs) and regulators to modulate their activities. While the mechanism of TF sequestration by DELLAs to prevent DNA binding to downstream targets has been extensively documented, the mechanism that allows them to act as coactivators remains to be understood. Here, we demonstrate that DELLAs directly recruit the Mediator complex to specific loci in Arabidopsis, facilitating transcription. This recruitment involves DELLA amino-terminal domain and the conserved MED15 KIX domain. Accordingly, partial loss of MED15 function mainly disrupted processes known to rely on DELLA coactivation capacity, including cytokinin-dependent regulation of meristem function and skotomorphogenic response, gibberellin metabolism feedback, and flavonol production. We have also found that the single DELLA protein in the liverwort Marchantia polymorpha is capable of recruiting MpMED15 subunits, contributing to transcriptional coactivation. The conservation of Mediator-dependent transcriptional coactivation by DELLA between Arabidopsis and Marchantia implies that this mechanism is intrinsic to the emergence of DELLA in the last common ancestor of land plants.


Arabidopsis Proteins , Arabidopsis , Gene Expression Regulation, Plant , Marchantia , Mediator Complex , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Mediator Complex/metabolism , Mediator Complex/genetics , Marchantia/genetics , Marchantia/metabolism , Gibberellins/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Transcription, Genetic , Plant Proteins/metabolism , Plant Proteins/genetics
2.
Biochem Soc Trans ; 52(2): 505-515, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38629612

In eukaryotic cells, organelle and vesicle transport, positioning, and interactions play crucial roles in cytoplasmic organization and function. These processes are governed by intracellular trafficking mechanisms. At the core of that trafficking, the cytoskeleton and directional transport by motor proteins stand out as its key regulators. Plant cell tip growth is a well-studied example of cytoplasm organization by polarization. This polarization, essential for the cell's function, is driven by the cytoskeleton and its associated motors. This review will focus on myosin XI, a molecular motor critical for vesicle trafficking and polarized plant cell growth. We will center our discussion on recent data from the moss Physcomitrium patens and the liverwort Marchantia polymorpha. The biochemical properties and structure of myosin XI in various plant species are discussed, highlighting functional conservation across species. We further explore this conservation of myosin XI function in the process of vesicle transport in tip-growing cells. Existing evidence indicates that myosin XI actively organizes actin filaments in tip-growing cells by a mechanism based on vesicle clustering at their tips. A hypothetical model is presented to explain the essential function of myosin XI in polarized plant cell growth based on vesicle clustering at the tip. The review also provides insight into the in vivo localization and dynamics of myosin XI, emphasizing its role in cytosolic calcium regulation, which influences the polymerization of F-actin. Lastly, we touch upon the need for additional research to elucidate the regulation of myosin function.


Myosins , Plant Cells , Myosins/metabolism , Plant Cells/metabolism , Bryopsida/metabolism , Bryopsida/growth & development , Plant Proteins/metabolism , Actin Cytoskeleton/metabolism , Marchantia/metabolism , Marchantia/growth & development , Plant Development/physiology
3.
Development ; 151(20)2024 Oct 15.
Article En | MEDLINE | ID: mdl-38572965

Microtubule organising centres (MTOCs) are sites of localised microtubule nucleation in eukaryotic cells. Regulation of microtubule dynamics often involves KATANIN (KTN): a microtubule severing enzyme that cuts microtubules to generate new negative ends, leading to catastrophic depolymerisation. In Arabidopsis thaliana, KTN is required for the organisation of microtubules in the cell cortex, preprophase band, mitotic spindle and phragmoplast. However, as angiosperms lack MTOCs, the role of KTN in MTOC formation has yet to be studied in plants. Two unique MTOCs - the polar organisers - form on opposing sides of the preprophase nucleus in liverworts. Here, we show that KTN-mediated microtubule depolymerisation regulates the number and organisation of polar organisers formed in Marchantia polymorpha. Mpktn mutants that lacked KTN function had supernumerary disorganised polar organisers compared with wild type. This was in addition to defects in the microtubule organisation in the cell cortex, preprophase band, mitotic spindle and phragmoplast. These data are consistent with the hypothesis that KTN-mediated microtubule dynamics are required for the de novo formation of MTOCs, a previously unreported function in plants.


Katanin , Marchantia , Microtubule-Organizing Center , Microtubules , Katanin/metabolism , Katanin/genetics , Microtubules/metabolism , Marchantia/metabolism , Marchantia/genetics , Microtubule-Organizing Center/metabolism , Mutation/genetics , Spindle Apparatus/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Arabidopsis/metabolism , Arabidopsis/genetics
4.
J Hazard Mater ; 470: 134088, 2024 May 15.
Article En | MEDLINE | ID: mdl-38555672

The arsenic-specific ACR3 transporter plays pivotal roles in As detoxification in yeast and a group of ancient tracheophytes, the ferns. Despite putative ACR3 genes being present in the genomes of bryophytes, whether they have the same relevance also in this lineage is currently unknown. In this study, we characterized the MpACR3 gene from the bryophyte Marchantia polymorpha L. through a multiplicity of functional approaches ranging from phylogenetic reconstruction, expression analysis, loss- and gain-of-function as well as genetic complementation with an MpACR3 gene tagged with a fluorescent protein. Genetic complementation demonstrates that MpACR3 plays a pivotal role in As tolerance in M. polymorpha, with loss-of-function Mpacr3 mutants being hypersensitive and MpACR3 overexpressors more tolerant to As. Additionally, MpACR3 activity regulates intracellular As concentration, affects its speciation and controls the levels of intracellular oxidative stress. The MpACR3::3xCitrine appears to localize at the plasma membrane and possibly in other endomembrane systems. Taken together, these results demonstrate the pivotal function of ACR3 detoxification in both sister lineages of land plants, indicating that it was present in the common ancestor to all embryophytes. We propose that Mpacr3 mutants could be used in developing countries as low-cost and low-technology visual bioindicators to detect As pollution in water.


Arsenic , Marchantia , Marchantia/genetics , Marchantia/metabolism , Marchantia/drug effects , Arsenic/toxicity , Arsenic/metabolism , Inactivation, Metabolic , Phylogeny , Oxidative Stress/drug effects , Plant Proteins/genetics , Plant Proteins/metabolism
5.
New Phytol ; 242(5): 2251-2269, 2024 Jun.
Article En | MEDLINE | ID: mdl-38501480

The plant cuticle is a hydrophobic barrier, which seals the epidermal surface of most aboveground organs. While the cuticle biosynthesis of angiosperms has been intensively studied, knowledge about its existence and composition in nonvascular plants is scarce. Here, we identified and characterized homologs of Arabidopsis thaliana fatty acyl-CoA reductase (FAR) ECERIFERUM 4 (AtCER4) and bifunctional wax ester synthase/acyl-CoA:diacylglycerol acyltransferase 1 (AtWSD1) in the liverwort Marchantia polymorpha (MpFAR2 and MpWSD1) and the moss Physcomitrium patens (PpFAR2A, PpFAR2B, and PpWSD1). Although bryophyte harbor similar compound classes as described for angiosperm cuticles, their biosynthesis may not be fully conserved between the bryophytes M. polymorpha and P. patens or between these bryophytes and angiosperms. While PpFAR2A and PpFAR2B contribute to the production of primary alcohols in P. patens, loss of MpFAR2 function does not affect the wax profile of M. polymorpha. By contrast, MpWSD1 acts as the major wax ester-producing enzyme in M. polymorpha, whereas mutations of PpWSD1 do not affect the wax ester levels of P. patens. Our results suggest that the biosynthetic enzymes involved in primary alcohol and wax ester formation in land plants have either evolved multiple times independently or undergone pronounced radiation followed by the formation of lineage-specific toolkits.


Waxes , Waxes/metabolism , Alcohols/metabolism , Phylogeny , Marchantia/genetics , Marchantia/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Bryopsida/genetics , Bryopsida/metabolism , Bryophyta/genetics , Bryophyta/metabolism , Aldehyde Oxidoreductases/metabolism , Aldehyde Oxidoreductases/genetics , Biosynthetic Pathways/genetics , Evolution, Molecular , Gene Expression Regulation, Plant , Acyltransferases/metabolism , Acyltransferases/genetics , Biological Evolution , Arabidopsis/genetics , Arabidopsis/metabolism , Mutation/genetics
6.
RNA Biol ; 21(1): 1-12, 2024 Jan.
Article En | MEDLINE | ID: mdl-38303117

MicroRNAs regulate gene expression affecting a variety of plant developmental processes. The evolutionary position of Marchantia polymorpha makes it a significant model to understand miRNA-mediated gene regulatory pathways in plants. Previous studies focused on conserved miRNA-target mRNA modules showed their critical role in Marchantia development. Here, we demonstrate that the differential expression of conserved miRNAs among land plants and their targets in selected organs of Marchantia additionally underlines their role in regulating fundamental developmental processes. The main aim of this study was to characterize selected liverwort-specific miRNAs, as there is a limited knowledge on their biogenesis, accumulation, targets, and function in Marchantia. We demonstrate their differential accumulation in vegetative and generative organs. We reveal that all liverwort-specific miRNAs examined are encoded by independent transcriptional units. MpmiR11737a, MpmiR11887 and MpmiR11796, annotated as being encoded within protein-encoding genes, have their own independent transcription start sites. The analysis of selected liverwort-specific miRNAs and their pri-miRNAs often reveal correlation in their levels, suggesting transcriptional regulation. However, MpmiR11796 shows a reverse correlation to its pri-miRNA level, suggesting post-transcriptional regulation. Moreover, we identify novel targets for selected liverwort-specific miRNAs and demonstrate an inverse correlation between their expression and miRNA accumulation. In the case of one miRNA precursor, we provide evidence that it encodes two functional miRNAs with two independent targets. Overall, our research sheds light on liverwort-specific miRNA gene structure, provides new data on their biogenesis and expression regulation. Furthermore, identifying their targets, we hypothesize the potential role of these miRNAs in early land plant development and functioning.


Marchantia , MicroRNAs , MicroRNAs/genetics , MicroRNAs/metabolism , Marchantia/genetics , Marchantia/metabolism , Plants/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Genitalia/metabolism , Gene Expression Regulation, Plant
7.
Plant Cell Physiol ; 65(4): 660-670, 2024 May 14.
Article En | MEDLINE | ID: mdl-38195149

In response to both biotic and abiotic stresses, vascular plants transmit long-distance Ca2+ and electrical signals from localized stress sites to distant tissues through their vasculature. Various models have been proposed for the mechanisms underlying the long-distance signaling, primarily centered around the presence of vascular bundles. We here demonstrate that the non-vascular liverwort Marchantia polymorpha possesses a mechanism for propagating Ca2+ waves and electrical signals in response to wounding. The propagation velocity of these signals was approximately 1-2 mm s-1, equivalent to that observed in vascular plants. Both Ca2+ waves and electrical signals were inhibited by La3+ as well as tetraethylammonium chloride, suggesting the crucial importance of both Ca2+ channel(s) and K+ channel(s) in wound-induced membrane depolarization as well as the subsequent long-distance signal propagation. Simultaneous recordings of Ca2+ and electrical signals indicated a tight coupling between the dynamics of these two signaling modalities. Furthermore, molecular genetic studies revealed that a GLUTAMATE RECEPTOR-LIKE (GLR) channel plays a central role in the propagation of both Ca2+ waves and electrical signals. Conversely, none of the three two-pore channels were implicated in either signal propagation. These findings shed light on the evolutionary conservation of rapid long-distance Ca2+ wave and electrical signal propagation involving GLRs in land plants, even in the absence of vascular tissue.


Calcium Signaling , Calcium , Marchantia , Marchantia/physiology , Marchantia/genetics , Marchantia/metabolism , Calcium/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Lanthanum/pharmacology , Receptors, Glutamate/metabolism , Receptors, Glutamate/genetics , Calcium Channels/metabolism , Calcium Channels/genetics , Tetraethylammonium/pharmacology , Potassium Channels/metabolism , Potassium Channels/genetics
8.
J Nat Prod ; 87(2): 228-237, 2024 02 23.
Article En | MEDLINE | ID: mdl-38266493

As a model liverwort, Marchantia polymorpha contains various flavone glucuronides with cardiovascular-promoting effects and anti-inflammatory properties. However, the related glucuronosyltransferases have not yet been reported. In this study, two bifunctional UDP-glucuronic acid/UDP-glucose:flavonoid glucuronosyltransferases/glucosyltransferases, MpUGT742A1 and MpUGT736B1, were identified from M. polymorpha. Extensive enzymatic assays found that MpUGT742A1 and MpUGT736B1 exhibited efficient glucuronidation activity for flavones, flavonols, and flavanones and showed promiscuous regioselectivity at positions 3, 6, 7, 3', and 4'. These enzymes catalyzed the production of a variety of flavonoid glucuronides with medicinal value, including apigenin-7-O-glucuronide and scutellarein-7-O-glucuronide. With the use of MpUGT736B1, apigenin-4'-O-glucuronide and apigenin-7,4'-di-O-glucuronide were prepared by scaled-up enzymatic catalysis and structurally identified by NMR spectroscopy. MpUGT742A1 also displayed glucosyltransferase activity on the 7-OH position of the flavanones using UDP-glucose as the sugar donor. Furthermore, we constructed four recombinant strains by combining the pathway for increasing the UDP-glucuronic acid supply with the two novel UGTs MpUGT742A1 and MpUGT736B1. When apigenin was used as a substrate, the extracellular apigenin-4'-O-glucuronide and apigenin-7,4'-di-O-glucuronide production obtained from the Escherichia coli strain BB2 reached 598 and 81 mg/L, respectively. Our study provides new candidate genes and strategies for the biosynthesis of flavonoid glucuronides.


Flavanones , Marchantia , Flavonoids/chemistry , Apigenin , Glucuronides/metabolism , Marchantia/metabolism , Glucuronosyltransferase/chemistry , Glucuronosyltransferase/metabolism , Escherichia coli/metabolism , Glucose , Glucuronic Acid , Uridine Diphosphate
9.
Plant J ; 117(3): 805-817, 2024 Feb.
Article En | MEDLINE | ID: mdl-37983622

Ascorbate plays an indispensable role in plants, functioning as both an antioxidant and a cellular redox buffer. It is widely acknowledged that the ascorbate biosynthesis in the photosynthetic tissues of land plants is governed by light-mediated regulation of the D-mannose/L-galactose (D-Man/L-Gal) pathway. At the core of this light-dependent regulation lies the VTC2 gene, encoding the rate-limiting enzyme GDP-L-Gal phosphorylase. The VTC2 expression is regulated by signals via the photosynthetic electron transport system. In this study, we directed our attention to the liverwort Marchantia polymorpha, representing one of the basal land plants, enabling us to conduct an in-depth analysis of its ascorbate biosynthesis. The M. polymorpha genome harbors a solitary gene for each enzyme involved in the D-Man/L-Gal pathway, including VTC2, along with three lactonase orthologs, which may be involved in the alternative ascorbate biosynthesis pathway. Through supplementation experiments with potential precursors, we observed that only L-Gal exhibited effectiveness in ascorbate biosynthesis. Furthermore, the generation of VTC2-deficient mutants through genome editing unveiled the inability of thallus regeneration in the absence of L-Gal supplementation, thereby revealing the importance of the D-Man/L-Gal pathway in ascorbate biosynthesis within M.  polymorpha. Interestingly, gene expression analyses unveiled a distinct characteristic of M. polymorpha, where none of the genes associated with the D-Man/L-Gal pathway, including VTC2, showed upregulation in response to light, unlike other known land plants. This study sheds light on the exceptional nature of M. polymorpha as a land plant that has evolved distinctive mechanisms concerning ascorbate biosynthesis and its regulation.


Marchantia , Humans , Marchantia/genetics , Marchantia/metabolism , Galactose/metabolism , Mannose/metabolism , Antioxidants/metabolism , Oxidative Stress , Plants/metabolism , Gene Expression Regulation, Plant
10.
Plant J ; 117(3): 669-678, 2024 Feb.
Article En | MEDLINE | ID: mdl-37921075

The plastid terminal oxidase PTOX controls the oxidation level of the plastoquinone pool in the thylakoid membrane and acts as a safety valve upon abiotic stress, but detailed characterization of its role in protecting the photosynthetic apparatus is limited. Here we used PTOX mutants in two model plants Arabidopsis thaliana and Marchantia polymorpha. In Arabidopsis, lack of PTOX leads to a severe defect in pigmentation, a so-called variegated phenotype, when plants are grown at standard light intensities. We created a green Arabidopsis PTOX mutant expressing the bacterial carotenoid desaturase CRTI and a double mutant in Marchantia lacking both PTOX isoforms, the plant-type and the alga-type PTOX. In both species, lack of PTOX affected the redox state of the plastoquinone pool. Exposure of plants to high light intensity showed in the absence of PTOX higher susceptibility of photosystem I to light-induced damage while photosystem II was more stable compared with the wild type demonstrating that PTOX plays both, a pro-oxidant and an anti-oxidant role in vivo. Our results shed new light on the function of PTOX in the protection of photosystem I and II.


Arabidopsis , Marchantia , Arabidopsis/genetics , Arabidopsis/metabolism , Electron Transport/genetics , Marchantia/genetics , Marchantia/metabolism , Oxidation-Reduction , Oxidoreductases/metabolism , Photosynthesis/genetics , Photosystem I Protein Complex/genetics , Photosystem I Protein Complex/metabolism , Photosystem II Protein Complex/metabolism , Plastids/metabolism , Plastoquinone
11.
Curr Biol ; 33(23): 5121-5131.e6, 2023 12 04.
Article En | MEDLINE | ID: mdl-37977139

Land plants undergo indeterminate growth by the activity of meristems in both gametophyte (haploid) and sporophyte (diploid) generations. In the sporophyte of the flowering plant Arabidopsis thaliana, the apical meristems are located at the shoot and root tips in which a number of regulatory gene homologs are shared for their development, implying deep evolutionary origins. However, little is known about their functional conservation with gametophytic meristems in distantly related land plants such as bryophytes, even though genomic studies have revealed that the subfamily-level diversity of regulatory genes is mostly conserved throughout land plants. Here, we show that a NAM/ATAF/CUC (NAC) domain transcription factor, JINGASA (MpJIN), acts downstream of CLAVATA3 (CLV3)/ESR-related (CLE) peptide signaling and controls stem cell behavior in the gametophytic shoot apical meristem of the liverwort Marchantia polymorpha. In the meristem, strong MpJIN expression was associated with the periclinal cell division at the periphery of the stem cell zone (SCZ), whereas faint MpJIN expression was found at the center of the SCZ. Time course observation indicates that the MpJIN-negative cells are lost from the SCZ and respecified de novo at two separate positions during the dichotomous branching event. Consistently, the induction of MpJIN results in ectopic periclinal cell division in the SCZ and meristem termination. Based on the comparative expression data, we speculate that the function of JIN/FEZ subfamily genes was shared among the shoot apical meristems in the gametophyte and sporophyte generations in early land plants but was lost in certain lineages, including the flowering plant A. thaliana.


Arabidopsis Proteins , Arabidopsis , Marchantia , Meristem/metabolism , Marchantia/genetics , Marchantia/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Biological Evolution , Arabidopsis/metabolism , Stem Cells/metabolism , Gene Expression Regulation, Plant , Arabidopsis Proteins/metabolism
12.
Plant Mol Biol ; 113(4-5): 121-142, 2023 Nov.
Article En | MEDLINE | ID: mdl-37991688

A wide variety of functional regulatory non-coding RNAs (ncRNAs) have been identified as essential regulators of plant growth and development. Depending on their category, ncRNAs are not only involved in modulating target gene expression at the transcriptional and post-transcriptional levels but also are involved in processes like RNA splicing and RNA-directed DNA methylation. To fulfill their molecular roles properly, ncRNAs must be precisely processed by multiprotein complexes. In the case of small RNAs, DICER-LIKE (DCL) proteins play critical roles in the production of mature molecules. Land plant genomes contain at least four distinct classes of DCL family proteins (DCL1-DCL4), of which DCL1, DCL3 and DCL4 are also present in the genomes of bryophytes, indicating the early divergence of these genes. The liverwort Marchantia polymorpha has become an attractive model species for investigating the evolutionary history of regulatory ncRNAs and proteins that are responsible for ncRNA biogenesis. Recent studies on Marchantia have started to uncover the similarities and differences in ncRNA production and function between the basal lineage of bryophytes and other land plants. In this review, we summarize findings on the essential role of regulatory ncRNAs in Marchantia development. We provide a comprehensive overview of conserved ncRNA-target modules among M. polymorpha, the moss Physcomitrium patens and the dicot Arabidopsis thaliana, as well as Marchantia-specific modules. Based on functional studies and data from the literature, we propose new connections between regulatory pathways involved in Marchantia's vegetative and reproductive development and emphasize the need for further functional studies to understand the molecular mechanisms that control ncRNA-directed developmental processes.


Arabidopsis Proteins , Arabidopsis , Embryophyta , Marchantia , MicroRNAs , Marchantia/genetics , Marchantia/metabolism , Plants/genetics , MicroRNAs/genetics , Biological Evolution , Arabidopsis/genetics , Embryophyta/genetics , Arabidopsis Proteins/genetics , Ribonuclease III/genetics , Ribonuclease III/metabolism
13.
Plant Cell Physiol ; 64(11): 1331-1342, 2023 Dec 06.
Article En | MEDLINE | ID: mdl-37804254

Membrane trafficking is a fundamental mechanism for protein and lipid transport in eukaryotic cells and exhibits marked diversity among eukaryotic lineages with distinctive body plans and lifestyles. Diversification of the membrane trafficking system is associated with the expansion and secondary loss of key machinery components, including RAB GTPases, soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) and adaptor proteins, during plant evolution. The number of AP180 N-terminal homology (ANTH) proteins, an adaptor family that regulates vesicle formation and cargo sorting during clathrin-mediated endocytosis, increases during plant evolution. In the genome of Arabidopsis thaliana, 18 genes for ANTH proteins have been identified, a higher number than that in yeast and animals, suggesting a distinctive diversification of ANTH proteins. Conversely, the liverwort Marchantia polymorpha possesses a simpler repertoire; only two genes encoding canonical ANTH proteins have been identified in its genome. Intriguingly, a non-canonical ANTH protein is encoded in the genome of M. polymorpha, which also harbors a putative kinase domain. Similar proteins have been detected in sporadic lineages of plants, suggesting their ancient origin and multiple secondary losses during evolution. We named this unique ANTH group phosphatidylinositol-binding clathrin assembly protein-K (PICALM-K) and characterized it in M. polymorpha using genetic, cell biology-based and artificial intelligence (AI)-based approaches. Our results indicate a flagella-related function of MpPICALM-K in spermatozoids, which is distinct from that of canonical ANTH proteins. Therefore, ANTH proteins have undergone significant functional diversification during evolution, and PICALM-K represents a plant-unique ANTH protein that is delivered by neofunctionalization through exon shuffling.


Arabidopsis , Marchantia , Animals , Plant Proteins/genetics , Plant Proteins/metabolism , Marchantia/genetics , Marchantia/metabolism , Artificial Intelligence , Arabidopsis/genetics , Protein Transport , SNARE Proteins/metabolism
14.
Plant J ; 116(2): 604-628, 2023 10.
Article En | MEDLINE | ID: mdl-37583263

A combination of streamlined genetics, experimental tractability and relative morphological simplicity compared to vascular plants makes the liverwort Marchantia polymorpha an ideal model system for studying many aspects of plant biology. Here we describe a transformation vector combining a constitutive fluorescent membrane marker with a nuclear marker that is regulated by nearby enhancer elements and use this to produce a library of enhancer trap lines for Marchantia. Screening gemmae from these lines allowed the identification and characterization of novel marker lines, including markers for rhizoids and oil cells. The library allowed the identification of a margin tissue running around the thallus edge, highlighted during thallus development. The expression of this marker is correlated with auxin levels. We generated multiple markers for the meristematic apical notch region, which have different spatial expression patterns, reappear at different times during meristem regeneration following apical notch excision and have varying responses to auxin supplementation or inhibition. This reveals that there are proximodistal substructures within the apical notch that could not be observed otherwise. We employed our markers to study Marchantia sporeling development, observing meristem emergence as defining the protonema-to-prothallus stage transition, and subsequent production of margin tissue during the prothallus stage. Exogenous auxin treatment stalls meristem emergence at the protonema stage but does not inhibit cell division, resulting in callus-like sporelings with many rhizoids, whereas pharmacologically inhibiting auxin synthesis and transport does not prevent meristem emergence. This enhancer trap system presents a useful resource for the community and will contribute to future Marchantia research.


Marchantia , Marchantia/genetics , Marchantia/metabolism , Indoleacetic Acids/metabolism , Cell Division
15.
Plant Cell ; 35(11): 4111-4132, 2023 Oct 30.
Article En | MEDLINE | ID: mdl-37597168

Gibberellins (GAs) are key phytohormones that regulate growth, development, and environmental responses in angiosperms. From an evolutionary perspective, all major steps of GA biosynthesis are conserved among vascular plants, while GA biosynthesis intermediates such as ent-kaurenoic acid (KA) are also produced by bryophytes. Here, we show that in the liverwort Marchantia polymorpha, KA and GA12 are synthesized by evolutionarily conserved enzymes, which are required for developmental responses to far-red light (FR). Under FR-enriched conditions, mutants of various biosynthesis enzymes consistently exhibited altered thallus growth allometry, delayed initiation of gametogenesis, and abnormal morphology of gamete-bearing structures (gametangiophores). By chemical treatments and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses, we confirmed that these phenotypes were caused by the deficiency of some GA-related compounds derived from KA, but not bioactive GAs from vascular plants. Transcriptome analysis showed that FR enrichment induced the up-regulation of genes related to stress responses and secondary metabolism in M. polymorpha, which was largely dependent on the biosynthesis of GA-related compounds. Due to the lack of canonical GA receptors in bryophytes, we hypothesize that GA-related compounds are commonly synthesized in land plants but were co-opted independently to regulate responses to light quality change in different plant lineages during the past 450 million years of evolution.


Gibberellins , Marchantia , Chromatography, Liquid , Gibberellins/metabolism , Light , Marchantia/metabolism , Tandem Mass Spectrometry
16.
Cells ; 12(14)2023 07 12.
Article En | MEDLINE | ID: mdl-37508498

Plant primary cell walls are composite structures surrounding the protoplast and containing pectins, hemicelluloses, and cellulose polysaccharides, as well as proteins. Their composition changed during the evolution of the green lineage from algae to terrestrial plants, i.e., from an aquatic to a terrestrial environment. The constraints of life in terrestrial environments have generated new requirements for the organisms, necessitating adaptations, such as cell wall modifications. We have studied the cell wall polysaccharide composition of thalli of Marchantia polymorpha, a bryophyte belonging to one of the first land plant genera. Using a collection of specific antibodies raised against different cell wall polysaccharide epitopes, we were able to identify in polysaccharide-enriched fractions: pectins, including low-methylesterified homogalacturonans; rhamnogalacturonan I with arabinan side-chains; and hemicelluloses, such as xyloglucans with XXLG and XXXG modules, mannans, including galactomannans, and xylans. We could also show the even distribution of XXLG xyloglucans and galactomannans in the cell walls of thalli by immunocytochemistry. These results are discussed with regard to the cell wall proteome composition and in the context of the evolution of the green lineage. The cell wall polysaccharides of M. polymorpha illustrate the transition from the charophyte ancestors of terrestrial plants containing xyloglucans, xylans and mannans as hemicelluloses, and embryophytes which do not exhibit mannans as major primary cell wall polysaccharides.


Embryophyta , Marchantia , Xylans/metabolism , Marchantia/metabolism , Mannans/metabolism , Polysaccharides/metabolism , Pectins/metabolism , Embryophyta/chemistry , Embryophyta/metabolism , Plants/metabolism , Cell Wall/metabolism
17.
Plant Cell Physiol ; 64(7): 826-838, 2023 Jul 17.
Article En | MEDLINE | ID: mdl-37178336

Sterols are essential components of eukaryotic cell membranes. However, studies on sterol biosynthesis in bryophytes are limited. This study analyzed the sterol profiles in the bryophyte model plant Marchantia polymorpha L. The thalli contained typical phytosterols such as campesterol, sitosterol and stigmasterol. BLASTX analysis of the M. polymorpha genome against the Arabidopsis thaliana sterol biosynthetic genes confirmed the presence of all the enzymes responsible for sterol biosynthesis in M. polymorpha. We further focused on characterizing two genes, MpDWF5A and MpDWF5B, which showed high homology with A. thaliana DWF5, encoding Δ5,7-sterol Δ7-reductase (C7R). Functional analysis using a yeast expression system revealed that MpDWF5A converted 7-dehydrocholesterol to cholesterol, indicating that MpDWF5A is a C7R. Mpdwf5a-knockout (Mpdwf5a-ko) lines were constructed using CRISPR/Cas9-mediated genome editing. Gas chromatography-mass spectrometry analysis of Mpdwf5a-ko revealed that phytosterols such as campesterol, sitosterol and stigmasterol disappeared, and instead, the corresponding Δ7-type sterols accumulated. The thalli of Mpdwf5a-ko grew smaller than those of the wild type, and excessive formation of apical meristem in the thalli was observed. In addition, the gemma cups of the Mpdwf5a-ko were incomplete, and only a limited number of gemma formations were observed. Treatment with 1 µM of castasterone or 6-deoxocastasterone, a bioactive brassinosteroid (BR), partly restored some of these abnormal phenotypes, but far from complete recovery. These results indicate that MpDWF5A is essential for the normal growth and development of M. polymorpha and suggest that the dwarfism caused by the Mpdwf5a-ko defect is due to the deficiency of typical phytosterols and, in part, a BR-like compound derived from phytosterols.


Arabidopsis , Marchantia , Phytosterols , Sterols , Oxidoreductases/metabolism , Sitosterols , Marchantia/genetics , Marchantia/metabolism , Stigmasterol , Brassinosteroids , Growth and Development
18.
Physiol Plant ; 175(2): e13898, 2023 Mar.
Article En | MEDLINE | ID: mdl-36974502

Low-molecular-weight sugars serve as protectants for cellular membranes and macromolecules under the condition of dehydration caused by environmental stress such as desiccation and freezing. These sugars also affect plant growth and development by provoking internal signaling pathways. We previously showed that both sugars and the stress hormone abscisic acid (ABA) enhance desiccation tolerance of gemma, a dormant propagule of the liverwort Marchantia polymorpha. To determine the role of ABA in sugar responses in liverworts, we generated genome-editing lines of M. polymorpha ABA DEFICIENT 1 (MpABA1) encoding zeaxanthin epoxidase, which catalyzes the initial reaction toward ABA biosynthesis. The generated Mpaba1 lines that accumulated only a trace amount of endogenous ABA showed reduced desiccation tolerance and reduced sugar responses. RNA-seq analysis of sucrose-treated gemmalings of M. polymorpha revealed that expression of a large part of sucrose-induced genes was reduced in Mpaba1 compared to the wild-type. Furthermore, Mpaba1 accumulated smaller amounts of low-molecular-weight sugars in tissues upon sucrose treatment than the wild-type, with reduced expression of genes for sucrose synthesis, sugar transporters, and starch-catabolizing enzymes. These results indicate that endogenous ABA plays a role in the regulation of the positive feedback loop for sugar-induced sugar accumulation in liverworts, enabling the tissue to have desiccation tolerance.


Abscisic Acid , Marchantia , Abscisic Acid/metabolism , Marchantia/genetics , Marchantia/metabolism , Sugars/metabolism , Desiccation , Sucrose/metabolism
19.
Pestic Biochem Physiol ; 191: 105370, 2023 Apr.
Article En | MEDLINE | ID: mdl-36963939

A sensing mechanism in mammals perceives xenobiotics and induces the transcription of genes encoding proteins that detoxify these molecules. However, it is unclear if plants sense xenobiotics, and activate an analogous signalling system leading to their detoxification. Using the liverwort Marchantia polymorpha, we tested the hypothesis that there is a sensing system in plants that perceives herbicides resulting in the increased transcription of genes encoding proteins that detoxify these herbicides. Consistent with the hypothesis, we show that chlorsulfuron-treatment induces changes in the M. polymorpha transcriptome. However, these transcriptome changes do not occur in chlorsulfuron (CS)-treated target site resistant mutants, where the gene encoding the target carries a mutation that confers resistance to chlorsulfuron. Instead, we show that inactivation of the chlorsulfuron target, acetolactate synthase (ALS) (also known as acetohydroxyacid synthase (AHAS)), is required for the transcriptome response. These data demonstrate that the transcriptome changes in chlorsulfuron-treated plants are caused by disrupted amino acid synthesis and metabolism resulting from acetolactate synthase inhibition, and indicate that the transcriptome changes are not caused by a herbicide sensing mechanism.


Acetolactate Synthase , Herbicides , Marchantia , Herbicides/toxicity , Acetolactate Synthase/metabolism , Marchantia/genetics , Marchantia/metabolism , Transcriptome , Herbicide Resistance/genetics
20.
Plant Cell Physiol ; 64(6): 637-645, 2023 Jun 15.
Article En | MEDLINE | ID: mdl-36947436

Aurones constitute one of the major classes of flavonoids, with a characteristic furanone structure that acts as the C-ring of flavonoids. Members of various enzyme families are involved in aurone biosynthesis in different higher plants, suggesting that during evolution plants acquired the ability to biosynthesize aurones independently and convergently. Bryophytes also produce aurones, but the biosynthetic pathways and enzymes involved have not been determined. The present study describes the identification and characterization of a polyphenol oxidase (PPO) that acts as an aureusidin synthase (MpAS1) in the model liverwort, Marchantia polymorpha. Crude enzyme assays using an M. polymorpha line overexpressing MpMYB14 with high accumulation of aureusidin showed that aureusidin was biosynthesized from naringenin chalcone and converted to riccionidin A. This activity was inhibited by N-phenylthiourea, an inhibitor specific to enzymes of the PPO family. Of the six PPOs highly induced in the line overexpressing MpMyb14, one, MpAS1, was found to biosynthesize aureusidin from naringenin chalcone when expressed in Saccharomyces cerevisiae. MpAS1 also recognized eriodictyol chalcone, isoliquiritigenin and butein, showing the highest activity for eriodictyol chalcone. Members of the PPO family in M. polymorpha evolved independently from PPOs in higher plants, indicating that aureusidin synthases evolved in parallel in land plants.


Chalcones , Marchantia , Catechol Oxidase/genetics , Catechol Oxidase/chemistry , Catechol Oxidase/metabolism , Marchantia/genetics , Marchantia/metabolism , Flavonoids
...